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ABSTRACT 

Computationally-generated and interlocking 3D puzzles are a 

fascinating concept—particularly in how there are various methods 

that attempt to as efficiently, accurately, and speedily as possible 

generate a variety of 3D puzzles that are not only challenging but 

incite more creation and excitement for the type of puzzles that are 

offered. We describe and compare the various methods and 

algorithms used to computationally generate these 3D objects, 

along with what these algorithms have in common and how they 

compare in being computationally efficient with regards to their 

input model processing, output, and interlocking mechanisms. 
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1. INTRODUCTION 
3D puzzles are generally nontrivial geometric problems that 

challenge our ingenuity. They have been longstanding stimulating 

recreational artifacts, where the task is to put together the puzzle 

pieces to form a meaningful 3D shape [10]. The same applies to 

non-puzzle 3D objects that not only closely emulate puzzles but 

also real-world objects that may be intended for actual real-world 

use, such as furniture.  

 

We focus on computationally-generated 3D puzzles and non-

puzzles. This refers to objects that are (in the general case) 

presented as input to a computational program as a 3D triangle 

mesh or voxelized representation. These objects are then processed 

by a given algorithm that determines how to split the object into 

pieces that interlock. This object is then either reconstructed using 

external materials (such as wood), or 3D printed; after which, the 

object can be dis/assembled and is interlocking. 

 

Interlocking assemblies have a long history in the design of puzzles, 

furniture, architecture, and other complex geometric structures. The 

key defining property of interlocking assemblies is that all 

component parts are immobilized by their geometric arrangement, 

preventing the assembly from falling apart [16]. 

 

Contribution. Our purpose here is to compare various approaches 

and algorithms that generate interlocking puzzles. The contribution 

that this makes will be in isolating approaches for specific purposes, 

and with particular attention to key characteristics of these 

approaches. This is not meant to present a new, subjectively better, 

or faster method, but rather provide an analysis of existing and 

documented methods.  

 

2. OVERVIEW 
The overall process is a simple one. First, a brief background and 

minor analysis of each approach (for 3D puzzles and non-puzzles 

respectively) will be given. Second, a tabled comparison of the 3D 

puzzle approaches listed below will follow. Then, a conclusion to 

wrap it up. 

 

For the sake of uniform terminology and meaning, several term 

meanings will be clarified. The term piece, unless otherwise stated, 

refers to a component of a whole 3D object, that is extracted and 

used for dis/assembly in conjunction with other pieces, and may not 

necessarily lead to an interlocking state on its own. The term 

segment, unless otherwise stated, refers to a subset of a whole 3D 

object, formed by several adjoining pieces that belong to said 

object. The term layer, unless otherwise stated, refers to a subset of 

a whole 3D object, formed by several adjoining segments/pieces 

that belong to said object, where each piece/segment shares an 

approximate vertical location in the object.   

 

3. ALGORITHMIC APPROACHES 
 

The set of algorithms to be compared are those specifically 

referring to the computational generation of 3D interlocking puzzle 

and non-puzzle objects (as per the following subsections 3.1 and 

3.2). Each subsection consists of a variety of categories of 

algorithms based on the type of approach used to generate said 

objects. This section provides a background on the represented 

paper, the algorithm used, and a preliminary analysis of its 

effectiveness and use. 



 

3.1 3D Puzzles 
 

Puzzles provide an engaging challenge and remain a new and 

enjoyable experience so long as the way(s) to solve them remain 

undetermined or unclear; once techniques to solve them are 

determined, there tends to be a sense of disinterest in said puzzles 

that arises. A solution to this problem is found in interlocking 

puzzles—which provide both a challenge and a unique experience. 

With the advent of 3D printing, various types of 3D models can 

now be printed; combine this with techniques to segment the 

models into interlocking pieces and a variety of different puzzles 

can be generated and printed for renewed challenges. There are 

various techniques that have been adopted for engaging in this 

process of breaking objects into interlocking pieces. This 

subsection explores a few categories of these techniques. 

3.1.1 3D Jigsaw Puzzle-esque 
Background. In the early stages (and times) of the creation of 

interlocking puzzles, computational generation was not existent, 

thus puzzles were merely produced but not yet artificially generated 

for editing on computer systems. Some earlier examples of these 

types of puzzles include 3D jigsaw-esque puzzles; these are puzzles 

composed of pieces that resemble 2D jigsaw puzzles, only they 

contain larger depths and depending on the approach, the pieces 

may be planar or non-planar, i.e., flat. 

 

Approach. Though at a high level the core procedure for compiling 

these types of puzzles is somewhat similar, the main distinction is 

in how the mechanics work to not only connect the pieces but also 

ensure that they interlock. One such method is one accomplished 

with two types of puzzle elements—one that can be folded into a 

corner configuration through a hinge that unites the planar 

segments of that element, and another that is generally planar, and 

(much like the first) does not have a specific design but rather 

differs per piece. The two element types interlock through a 

dovetail-type joint [2]; Figure 1 (a) depicts this element 

configuration. This method is ideally suited for flat structures (or 

objects built out of wall-like elements) such as house models. 

Taking this type of method further by using non-planar elements 

and different interlocking mechanics, this concept evolves further 

to emulate more than fundamentally flat structures. An example of 

this is one that uses a support structure as a basis for a known object, 

with the non-planar elements clipping onto the support structure to 

form a resembling outer surface of the known object, and held 

together by release pins in the interior of the support structure, such 

as in [13] and shown in Figure 1 (b). An optional addition to this 

approach includes forming a release mechanism inside the support 

structure configured to release at least one of the pieces on the 

exterior of the object. 

 

Inspection. This approach proved sufficient to reproduce/emulate 

real-world objects and of various shapes and sizes. It succeeds in 

being generally applicable. One of its main downsides is that each 

support structure will have a finite and predetermined set of 

assemblable objects. It appears to have a low difficulty in terms of 

assembly, so it fails in providing a complex challenge as a puzzle. 

This shortfall means that it does not have longevity in terms of 

replayability and enjoyment. The main downside is, of course, that 

it is not computationally-generated and therefore cannot provide a 

variety of interlocking puzzles. 

 

3.1.2 Disc and Extrusion 
Background. Similarly to the aforementioned approach, this 

category of 3D puzzles also has some roots in physically-produced 

objects composed of likewise pieces. Before computability was 

applied to this type of interlocking puzzle creation, there existed 

one in which discs were used to interlock and form larger objects. 

This concept was later adapted to computation and enhanced with 

the process of extrusion. 

 

Approach. The earlier method adopted for this type of puzzle made 

use of specifically and purposefully-designed discs. A “disc” 

within the context of [9] is described as a puzzle piece which 

includes a first flat side surface, a second flat side surface opposite 

the first side surface, and an outer circumferential surface between 

the first side surface and the second side surface around the 

circumference of each puzzle piece. Each of the puzzle pieces 

further includes a radial slot extending from approximately the 

center point along the radius to and through the outer edge and the 

outer surface. The disc, as shown in Figure 1 (c), has a singular 

design and each piece is able to interlock with another, albeit with 

the assistance of pins that are slotted into the two apertures on the 

disc. The puzzle is considered complete/solved once the total set of 

pieces are joined to form a sphere-like structure. With the power of 

computation added, later on, a similar (but not necessarily linked) 

concept was applied using a construct made up of disc-like 

segments, called a canonical six-piece burr puzzle (or knot). This 

burr puzzle acts as a basis for even larger puzzles composed of just 

of one of these, or a multitude. In the base case, this is achieved 

when the outer pieces of one knot are extruded using an anisotropic 

(axial) scaling until they go beyond the 3D model. The next step is 

to apply a CSG (Constructive Solid Geometry) intersection 

between the extruded six pieces and the given 3D model (i.e., 

isolate the intersecting parts of the model and extruded pieces) to 

produce the puzzle “skeleton” as shown in Figure 1 (d) [14]. The 

general case is when several knots are joined in a network in order 

to emulate the desired output object. Both cases produce an object 

that is perfectly interlocking and consists of one key piece. 



Inspection. The former method, not being computationally 

implemented, fails to be generally applicable. It is limited to one 

type of final structure that can be assembled using its pieces. It 

appears to have a low assembly difficulty and it lacks longevity due 

to its absence of variety. The latter method, with its computational 

implementation, is generally applicable. In using multiple knots it 

is able to contort its extrusion and conform to match a variety of 

objects. This variety enables it to add complexity to the types of 

interlocking puzzles produced and therefore provide a suitable 

challenge. It also has longevity attributed to its variety. 

 

3.1.3 Layers 
Background. This approach is one in which a realised object is 

built up layer by layer till completion. Each layer is built from the 

bottom up, as it would naturally be to assemble a real-world object 

with that type of layout of segments. Each layer may consist of 

several segments joined together. Each segment is composed of 

several pieces. 

 

Approach. The first type of method that implements this kind of 

approach is one that uses polyominoes as basic building blocks for 

constructing the shapes used in the puzzle assembly. A polyomino 

is a generalization of a domino constructed by connecting n squares 

edge-to-edge instead of the two squares of an ordinary domino [5]. 

This method involves three main steps; The initial step is that it 

applies quad-based surface parametrization to the input solid, and 

tiles the parametrized surface with polyominoes. This means that a 

joint sequence of quads are mapped onto the entirety of the input 

3D model such that each quad is flattenable to a square, which is 

achieved with the assistance of a dual graph over the surface, where 

each node corresponds to a quad region on the parametrized 

surface, and then a variety of polyomino shapes are generated and 

mapped to these quads. In the next step, the method constructs a 

nonintersecting offset surface inside the input solid and shapes the 

puzzle pieces to fit inside a thick shell volume (which is structured 

similarly to the input solid). The build-up process’ consistency is 

assured with the use of a dependency graph—which describes the 

building-order frequency among the puzzles; in essence, the 

implication is that puzzle piece 1 depends on piece 2 when piece 1 

is placed into a partially-completed puzzle model which already 

contains piece 2. Finally, the method develops a family of 

associated techniques for precisely constructing the geometry of 

individual puzzle pieces, including the ring-based ordering scheme, 

the motion space analysis technique, and the tab and blank 

construction method—all detailed in [5]. The end result is an 

interlocking puzzle, buildable from the bottom up. Another type of 

method that follows this approach is one that uses a voxelized 

model, with each voxel split into 8 equal-size blocks. To construct 

the model, the method first builds long flat chains of the squares 

(named segments) by connecting joints (male and female 

connectors on the blocks that permit movement in a certain 

direction depending on the type of block) of previous squares to 

new squares. Then the next step is to build layers, where a layer is 

a set of blocks with the same z-coordinate. Each layer is composed 

of segments, where each segment prevents movement of the 

previous segment. Then for each layer, the method determines the 

last block assembled, orders segments, determines the last block of 

each segment, determines assembly directions, and then ensures 

that there are joints between adjoining layers, segments, and blocks 

in every segment. The last step is to match every block with 

predefined blocks, and finally assemble the model using predefined 

blocks. This process is outlined in [15]. Both method types use a 

layered approach in that pieces have to be assembled from the 

bottom up, meaning each piece depends on the piece(s) below it 

when the assembling the puzzle. Figure 2 depicts this type of 

assembly system. 

 

Inspection. The two methods of the layered approach mentioned 

above are sufficiently generally applicable in terms of the variety 

of objects that can be produced and assembled having used that 

approach as a basis. However, only the first method outputs an 

assembly of a model that still matches the original shape and 

structure of the original input model but still emulates a real object, 

whereas the second method both inputs and outputs a voxelized 

object, with no attempts to match any particular real-world 

geometry of the represented object. The first method appears fairly 

straight-forward in terms of assembly difficulty, whereas the 

second method appears to be a bit more complex, due to the various 

shapes and extrusions of the pieces. Though different in assembly 

difficulty, both methods have longevity since they vary in the types 

of objects that can work with. 

 

3.1.4 Voxelisation 
Background. This last approach in the 3D puzzle section 

highlights methods that rely on the voxelization process in order to 

produce pieces that interlock when assembled. Three methods will 

be highlighted—with the second and third building off the first. 

 

Approach. The first method takes in a general voxelized shape as 

input and iteratively extracts puzzle pieces from it to generate the 

puzzle. First is the key piece, then the next piece adjacent to that, 

and so on. The method ensures that every three consecutive pieces 

interlock, and therefore ensuring that the whole puzzle interlocks 

without having to exhaustively verify this. As mentioned, the first 

step is to isolate and extract the key piece, which is accomplished 

by first picking candidate seed voxels—that is, voxels that are on 

the outer surface of the model and that are unobstructed above 

them, then calculate voxel accessibility, ensure blocking and 



mobility in a given direction, and finally expand the key piece 

(select more adjoining voxels to balance the size of the puzzle 

pieces) and confirm that the voxels next to the key in a set can be 

visited or in the remaining set of pieces that exclude the next piece 

to be removed after the key. This process is similarly applied to the 

remainder of the voxels, with exceptions to this detailed in [10]. 

The end result is a voxelized interlocking puzzle that can be 

assembled and disassembled, with one piece as the key. The 

resulting pieces of this method can only be assembled in a specific 

order. The second method draws on concepts from the first, but still 

offers its own procedure, and outputs an object that matches the 

geometry of the input object, along with ensuring that this object 

can be 3D printed (by partitioning it into 3D parts that can be 

assembled) without concerns of its size. The first step in this 

method is to take in a 3D watertight (well-defined exterior 

boundary and closed volume) model as input, then place a voxel 

grid in the 3D object space and slightly adjust the voxel size to 

reduce the number of undesired partial voxels. Then, the input 

model is voxelized. Partial voxels with tiny fragments are avoided 

by slightly deforming the model geometry locally. Next, the 

connection strength between neighboring (partial) voxels is 

measured and a shape connection graph is built by analyzing the 

local shapes [12]. Then, construct an initial set of interlocking 3D 

parts from the internal voxels, and attach the remaining partial 

voxels one by one to the constructed interlocking parts without 

breaking the fulfilled requirements (structural soundness and strong 

connection). Lastly, the method constructs the geometry of the final 

3D parts by using CSG intersection (mentioned earlier) between the 

voxelized parts and the input mesh. The third method in this 

approach also draws on the concepts and techniques in the first 

method. To start off with, the input expected is the final shape of 

the assembly, from which the component parts are either 

constructed from scratch as in [10] or explicitly initialized. The 

computational process for creating an interlocking assembly starts 

with the full input model, then iteratively splits off successive parts 

for disassembly. At each iteration, it first identifies a set of suitable 

blocking relations to be generated between the current assembly 

and the new part such that the interlocking property is maintained. 

Then it searches for the part geometry that satisfies these blocking 

relations. The selection of a new part is guided by a ranking 

function that takes into account certain geometric properties, e.g., 

part size, or other requirements, e.g., on part fabrication. The search 

space is then explored in a tree traversal process that uses automatic 

backtracking when no interlocking solution could be found in a 

specific iteration. The method implementation includes a user 

interface to interactively explore different options for part 

decomposition, allowing the user to overwrite the generic ranking 

function for part selection. The end result is a perfectly interlocking 

voxelized puzzle [16]. The third method has a major difference 

between it and the first—that being that while the first relies only 

on the previous piece to immobilize the current piece, the third 

relies on all previous pieces to immobilize the current and any other 

remaining pieces. All three methods fundamentally rely on the 

voxelization process in order to segment the input model into 

interlocking pieces. Figure 3 gives an idea of these methods. 

 

Inspection. All three methods are generally applicable, i.e., can 

generate a wide variety of interlocking objects. The difficulty of 

assembling any of these depends entirely on the builder’s 

competency and the model, size, and number of pieces of the 

relevant puzzle. All of the methods have longevity, attributed to the 

variety in the type of puzzles that can be generated.  

 

3.2 3D Non-Puzzles 
Computationally-generated objects go beyond just 3D puzzles—

they span to whatever the algorithm/approach applied can 

reproduce. This can be anything from toys to furniture, general, and 

novelty items all alike. The possibilities are endless. The objects 

visualized with these methods generally inform and feed into new 

ways of creating objects that are self-reliant in terms of assembly, 

i.e., don’t require external objects to keep them held together. This 

is particularly true for those with interlocking mechanisms. This 

subsection explores a few approaches used in pursuit of these 

mechanisms. Perhaps, to some extent, these approaches could 

potentially be applicable to 3D puzzles—but this requires some 

intel. 

 

3.2.1 Furniture 
Background. Furniture typically consists of assemblies of 

elongated and planar parts that are connected together by glue, 

nails, hinges, screws, or other means that do not encourage 

disassembly and re-assembly [3], so new approaches were 

developed that would rid the process of these additional means, i.e., 

through interlocking mechanisms. There are various methods for 

this purpose but three will be highlighted here. 

 

Approach. The first method presents a computational solution to 

support the design of a network of interlocking joints that form a 

globally-interlocking furniture assembly. The key idea is to break 

the furniture complex into an overlapping set of small groups, 

where the parts in each group are immobilized by a local key, and 

adjacent groups are further locked with dependencies. The 



dependency among the groups saves the effort of exploring the 

immobilization of every subset of parts in the assembly, thus 

allowing the intensive interlocking computation to be localized 

within each small group [3]. The second method presents an 

interactive tool for designing intrinsic joints. Users draw the visual 

appearance of the joints on the surface of an input furniture model 

as groups of two-dimensional regions that must belong to the same 

part. The method automatically partitions the furniture model into 

a set of solid 3D parts that conform to the user-specified 2D regions 

and assemble into the furniture. If the input does not merit 

assemblable solid 3D parts, then the method reports the failure and 

suggests options for redesigning the 2D surface regions so that they 

are assemblable. Similarly, if any parts in the resulting assembly 

are unstable, then the method suggests where additional 2D regions 

should be drawn to better interlock the parts and improve stability. 

To perform this stability analysis, a novel variational static analysis 

method that addresses the shortcomings of the equilibrium method 

for this task is introduced. Specifically, this method correctly 

detects sliding instabilities and reports the locations and directions 

of sliding and hinging failures [4]. The third method presents 

computational methods as tools to assist the design and 

construction of reconfigurable assemblies (i.e., consists of a 

common set of parts that can be assembled into different forms for 

use in different situations), typically for furniture. There are three 

key contributions to this work. First, the method presents the 

compatible decomposition as a weakly-constrained dissection 

problem, and derive its solution based on a dynamic bipartite 

(consisting of two parts) graph to construct parts across multiple 

forms; particularly, the method optimizes the parts reuse and 

preserve the geometric semantics. Second, the method develops a 

joint connection graph to model the solution space of 

reconfigurable assemblies with part and joint compatibility across 

different forms. Third, the method formulates the backward 

interlocking and multi-key interlocking models, with which it 

iteratively plans the joints consistently over multiple forms [11]. 

An example of furniture is shown in Figure 4 (a). 

 

Inspection. The first method performs well for its intended purpose 

but its interlocking mechanism isn’t suited to puzzles, similarly to 

the third method, due to their strictly purposed parts and 

inconvenience of disassembly. The second method, however, can 

be reconstructed as a puzzle thanks to its variety of parts that can 

be assembled and disassembled with more ease, and that interlock. 

 

3.2.2 General 
Background. Unlike the previous approach (to some extent) there 

are approaches that were designed to be generally applicable, i.e., 

generate or guide in creating a variety of different objects. Two 

methods within this approach will be highlighted here. 

 

Approach. The first method is one that presents a software 

environment intended to support the fluid interactive design of 

reconfigurables, featuring tools that identify, visualize, monitor and 

resolve infeasible configurations [1]. This method relies on users to 

use the tools for the creation and editing of reconfigurables, and 

aids in that process; although it’s largely autonomous. The second 

method that falls within the General approach is one that allows the 

computation of aesthetically pleasing structures that are structurally 

stable, efficiently fabricatable with a 2D wire bending machine, and 

assemblable without the need of additional connectors. Starting 

from a set of planar contours provided by the user, this method 

automatically tests for the feasibility of a design, determines a 

discrete ordering of wires at intersection points, and optimizes for 

the rest shape of the individual wires to maximize structural 

stability under frictional contact [8]. An example of a generally 

applicable method is shown in Figure 4 (b). 

 

Inspection. Both of the methods are generally applicable and 

specialize in creating/designing a wide range of different objects. 

Unfortunately, though, neither is suited for creating puzzles—

interlocking ones included as the first simply contorts to 

reconfigure itself into a predefined configuration, and doesn’t 

necessarily assemble and disassemble with ease, or would be 

suitable to do so recreationally, and the second would be too 

complex and not suitably designed for recreational use as well.  

 

3.2.3 Novelty 
Background. In addition to the specialized and purposed 

approaches stated earlier, there also exist approaches that merely 

facilitate in creating/designing novelty objects, i.e., cheap or 

unusual objects. Two such methods will be highlighted here. 

 

Approach. One such method in this approach is one that presents 

a computational system to design an interlocking structure of a 

partitioned shell model, which uses only male and female 

connectors to lock shell pieces in the assembled configuration. 

Given a mesh segmentation input, this system automatically finds 

an optimal installation plan specifying both the installation order 

and the installation directions of the pieces, and then builds the 

models of the shell pieces using optimized shell thickness and 

connector sizes. To find the optimal installation plan, simulation-

based and data-driven metrics are developed and incorporated into 



an optimal plan search algorithm with fast pruning and local 

optimization strategies. The whole system is automatic, except for 

the shape design of the key piece [7]. The second method is one 

that presents an interactive tool for designing physical surfaces 

made from flexible interlocking quadrilateral elements of a single 

size and shape. With the element shape fixed, the design task 

becomes one of finding a discrete structure—i.e., element 

connectivity and binary orientations—that leads to the desired 

geometry. In order to address this challenging problem of 

combinatorial geometry, the method proposes a forward modeling 

tool that allows the user to interactively explore the space of 

feasible designs. Paralleling principles from conventional modeling 

software, this approach leverages a library of base shapes that can 

be instantiated, combined, and extended using two fundamental 

operations: merging and extrusion [6]. An example of a novelty 

object is shown in Figure 4 (c). 

 

Inspection. Both of the methods are generally applicable and 

specialize in creating/designing a wide range of different objects, 

just as the methods in the previously-mentioned approach. From a 

design standpoint, both methods would be suited for 

creating/designing puzzles, although the first method wouldn’t 

offer a high difficulty due to its ease of assembly.  

 

4. ALGORITHM COMPARISON 
This section compares some key attributes/characteristics of 

algorithms, in an attempt to find one or a few that are optimal in 

generating interlocking puzzles, and perhaps finding one that 

subjectively does it best. 

 

Ref Computational 

Speed  

Variability of Output Model Size Limit Quality of Output Puzzle Level of 

Difficulty of 

Implementation 

Interlocking 

Mechanism 

Difficulty 

[2] N/A Medium—purposed for 

houses/castles, but can 

be repurposed for more 

Depends on the size 

of the object’s 

materials 

Not computationally-

generated, but the output 

is flat along each surface 

and interlocks without 

fault 

N/A Low 

[13] N/A High—with non-planar 

pieces, more and 

different types of 

objects can be made 

Depends on the size 

of the object’s 

materials 

Not computationally-

generated, but the output 

interlocks without fault, 

although it consists of too 

many additional items to 

ensure interlocking 

N/A Medium 

[9] N/A Low—Output always 

likened to a sphere. No 

variability 

Each piece has an 

approximate radius 

of 38 cm, the 

diameter of the 

assembled object = 

38*4 = 152 

Not computationally-

generated, but the output 

interlocks without fault. 

Can only be likened to a 

sphere and no other 

object 

N/A Low 

[14] Model: bunny 

#pieces: 16 

Time (s): 163 

High—but limited to 

3D shapes with parts 

that aren’t too flat or 

narrow 

64 knots. 240 pieces High—output is wooden, 

but still resembles source 

object 

Medium Medium 

[5] Model: bunny 

#pieces: 258 

Time (s): 

0.224 

High—generates a wide 

variety of objects, but 

limited to models that 

don’t have thin or 

highly curved parts 

325 pieces High—completely 

resembles source object 

Medium Low 

[15] Model: alpaca 

#pieces: 400 

Time (s): 0.15 

High 13104 pieces Low—resembles source 

object but has no outer 

surface, and is blocky 

and non-smooth 

Medium Medium 

[10] Model: bunny 

#pieces: 10 

Time (s): 

378.6 

High—generates 

voxelized variations of 

different objects, but 

limited by object pieces 

that rotate  

1250 pieces Low—resembles source 

object but the output is 

still a voxelized 

representation 

Medium Low 



#voxels: 

20010 

[12] Model: bunny 

#pieces: 16 

Time (s): 43 

#voxels: 536 

High—generates a wide 

variety of objects, but 

limited to models that 

aren’t hollow with thin 

boundaries 

20 pieces High—completely 

resembles source object 

Medium Low 

[16] Model: bunny 

#pieces: 10 

Time (s): 43.8 

High—generates 

voxelized variations of 

different objects 

1500 pieces Low—resembles source 

object but the output is 

still a voxelized 

representation 

High Low 

Table 1: 3D Puzzle Algorithm Comparison 

 

 

5. CONCLUSION 
Interlocking is an intriguing but complex mechanical state, where 

assembled component pieces appear to lock one another. Yet, the 

puzzle can be disassembled through certain sequences of moves 

starting from the key(s) [10]. We have peered at various approaches 

to solving this problem and analyzed a few key characteristics that 

show resemblance or difference among them here. For general 

comparison purposes, a model of a bunny (or as close a 

representation as can be found) is used across all 3D puzzle 

approaches. 

 

As can be seen from the comparisons in Table 1, the following 

apply: 

Speed. Pertaining to computational speed, [15] is able to generate 

more pieces with the least amount of time. 

Output variability. The majority of approaches have high 

variability. 

Model size limit. [15] has the largest number of recorded pieces 

for its respective assembly. 

Quality of output puzzle. [2,13,9] are not computationally-

generated, the rest are, but only [14,5,12] are of high quality. 

Implementation difficulty. [16] has shown to be the most difficult, 

while [10] has shown to be the least difficult. 

Interlocking mechanism difficulty. On average, the difficulty is 

low. In this case, the higher the difficulty, the better it is for 

dis/assembly—as people generally want this to be a challenge. 

Approaches [13,14,15] accomplish this best. 

 

Non-puzzles. On the basis of the inspections listed above for the 

described and analyzed non-puzzle approaches, there are three 

methods that could potentially be applied to puzzle generation—

given time for testing. The first is [4]—where based on its ability 

to create a variety of interlocking parts that can be assembled and 

disassembled with more ease, paves way for the possibility of 

venturing into 3D puzzles, except that no computation times are 

provided and so this is only conjecture. The second prominent 

method is [7]—where similarly to [4], provides variety and ease of 

assembly; in addition, a squirrel model composed of 11 pieces takes 

130.7 seconds to generate, which is significantly slower than the 

fastest 3D puzzle approaches but still makes it a choice among 

them. The last is [6]—where likewise, there’s ease of assembly and 

variety of output; in addition, a bunny model composed of 188 

pieces takes 160 seconds to generate, which is faster than a few of 

the 3D puzzle approaches, so it is a choice as well.  

 

Overall. On the basis of Table 1 and minor analysis of each 

approach in subsections 3.1 and 3.2, it appears that [15], although 

generating models without surfaces for resembling source models, 

is the best/most efficient among the various approaches 

investigated here, based on the specific characteristics in Table 1. 
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