
Analysis and Comparison of Computationally-generated
3D Puzzle and Non-Puzzle Interlocking Algorithms

Dominic Ngoetjana
NGWKGA001

University of Cape Town

ABSTRACT

Computationally-generated and interlocking 3D puzzles are a

fascinating concept—particularly in how there are various methods

that attempt to as efficiently, accurately, and speedily as possible

generate a variety of 3D puzzles that are not only challenging but

incite more creation and excitement for the type of puzzles that are

offered. We describe and compare the various methods and

algorithms used to computationally generate these 3D objects,

along with what these algorithms have in common and how they

compare in being computationally efficient with regards to their

input model processing, output, and interlocking mechanisms.

CCS Concepts

• Mathematics of computing ➝ Information Theory; • Theory

of computation ➝ Design and analysis of algorithms ➝

Mathematical optimization ➝ Continuous optimization;

• Theory of Computation ➝ Theory and algorithms for

application domains ➝ Algorithmic game theory and

mechanism design ➝ Algorithmic game theory

Keywords

Interlocking Puzzle(s); 3D Printing; 3D Models; Computationally

Generated; Approach;

1. INTRODUCTION
3D puzzles are generally nontrivial geometric problems that

challenge our ingenuity. They have been longstanding stimulating

recreational artifacts, where the task is to put together the puzzle

pieces to form a meaningful 3D shape [10]. The same applies to

non-puzzle 3D objects that not only closely emulate puzzles but

also real-world objects that may be intended for actual real-world

use, such as furniture.

We focus on computationally-generated 3D puzzles and non-

puzzles. This refers to objects that are (in the general case)

presented as input to a computational program as a 3D triangle

mesh or voxelized representation. These objects are then processed

by a given algorithm that determines how to split the object into

pieces that interlock. This object is then either reconstructed using

external materials (such as wood), or 3D printed; after which, the

object can be dis/assembled and is interlocking.

Interlocking assemblies have a long history in the design of puzzles,

furniture, architecture, and other complex geometric structures. The

key defining property of interlocking assemblies is that all

component parts are immobilized by their geometric arrangement,

preventing the assembly from falling apart [16].

Contribution. Our purpose here is to compare various approaches

and algorithms that generate interlocking puzzles. The contribution

that this makes will be in isolating approaches for specific purposes,

and with particular attention to key characteristics of these

approaches. This is not meant to present a new, subjectively better,

or faster method, but rather provide an analysis of existing and

documented methods.

2. OVERVIEW
The overall process is a simple one. First, a brief background and

minor analysis of each approach (for 3D puzzles and non-puzzles

respectively) will be given. Second, a tabled comparison of the 3D

puzzle approaches listed below will follow. Then, a conclusion to

wrap it up.

For the sake of uniform terminology and meaning, several term

meanings will be clarified. The term piece, unless otherwise stated,

refers to a component of a whole 3D object, that is extracted and

used for dis/assembly in conjunction with other pieces, and may not

necessarily lead to an interlocking state on its own. The term

segment, unless otherwise stated, refers to a subset of a whole 3D

object, formed by several adjoining pieces that belong to said

object. The term layer, unless otherwise stated, refers to a subset of

a whole 3D object, formed by several adjoining segments/pieces

that belong to said object, where each piece/segment shares an

approximate vertical location in the object.

3. ALGORITHMIC APPROACHES

The set of algorithms to be compared are those specifically

referring to the computational generation of 3D interlocking puzzle

and non-puzzle objects (as per the following subsections 3.1 and

3.2). Each subsection consists of a variety of categories of

algorithms based on the type of approach used to generate said

objects. This section provides a background on the represented

paper, the algorithm used, and a preliminary analysis of its

effectiveness and use.

3.1 3D Puzzles

Puzzles provide an engaging challenge and remain a new and

enjoyable experience so long as the way(s) to solve them remain

undetermined or unclear; once techniques to solve them are

determined, there tends to be a sense of disinterest in said puzzles

that arises. A solution to this problem is found in interlocking

puzzles—which provide both a challenge and a unique experience.

With the advent of 3D printing, various types of 3D models can

now be printed; combine this with techniques to segment the

models into interlocking pieces and a variety of different puzzles

can be generated and printed for renewed challenges. There are

various techniques that have been adopted for engaging in this

process of breaking objects into interlocking pieces. This

subsection explores a few categories of these techniques.

3.1.1 3D Jigsaw Puzzle-esque
Background. In the early stages (and times) of the creation of

interlocking puzzles, computational generation was not existent,

thus puzzles were merely produced but not yet artificially generated

for editing on computer systems. Some earlier examples of these

types of puzzles include 3D jigsaw-esque puzzles; these are puzzles

composed of pieces that resemble 2D jigsaw puzzles, only they

contain larger depths and depending on the approach, the pieces

may be planar or non-planar, i.e., flat.

Approach. Though at a high level the core procedure for compiling

these types of puzzles is somewhat similar, the main distinction is

in how the mechanics work to not only connect the pieces but also

ensure that they interlock. One such method is one accomplished

with two types of puzzle elements—one that can be folded into a

corner configuration through a hinge that unites the planar

segments of that element, and another that is generally planar, and

(much like the first) does not have a specific design but rather

differs per piece. The two element types interlock through a

dovetail-type joint [2]; Figure 1 (a) depicts this element

configuration. This method is ideally suited for flat structures (or

objects built out of wall-like elements) such as house models.

Taking this type of method further by using non-planar elements

and different interlocking mechanics, this concept evolves further

to emulate more than fundamentally flat structures. An example of

this is one that uses a support structure as a basis for a known object,

with the non-planar elements clipping onto the support structure to

form a resembling outer surface of the known object, and held

together by release pins in the interior of the support structure, such

as in [13] and shown in Figure 1 (b). An optional addition to this

approach includes forming a release mechanism inside the support

structure configured to release at least one of the pieces on the

exterior of the object.

Inspection. This approach proved sufficient to reproduce/emulate

real-world objects and of various shapes and sizes. It succeeds in

being generally applicable. One of its main downsides is that each

support structure will have a finite and predetermined set of

assemblable objects. It appears to have a low difficulty in terms of

assembly, so it fails in providing a complex challenge as a puzzle.

This shortfall means that it does not have longevity in terms of

replayability and enjoyment. The main downside is, of course, that

it is not computationally-generated and therefore cannot provide a

variety of interlocking puzzles.

3.1.2 Disc and Extrusion
Background. Similarly to the aforementioned approach, this

category of 3D puzzles also has some roots in physically-produced

objects composed of likewise pieces. Before computability was

applied to this type of interlocking puzzle creation, there existed

one in which discs were used to interlock and form larger objects.

This concept was later adapted to computation and enhanced with

the process of extrusion.

Approach. The earlier method adopted for this type of puzzle made

use of specifically and purposefully-designed discs. A “disc”

within the context of [9] is described as a puzzle piece which

includes a first flat side surface, a second flat side surface opposite

the first side surface, and an outer circumferential surface between

the first side surface and the second side surface around the

circumference of each puzzle piece. Each of the puzzle pieces

further includes a radial slot extending from approximately the

center point along the radius to and through the outer edge and the

outer surface. The disc, as shown in Figure 1 (c), has a singular

design and each piece is able to interlock with another, albeit with

the assistance of pins that are slotted into the two apertures on the

disc. The puzzle is considered complete/solved once the total set of

pieces are joined to form a sphere-like structure. With the power of

computation added, later on, a similar (but not necessarily linked)

concept was applied using a construct made up of disc-like

segments, called a canonical six-piece burr puzzle (or knot). This

burr puzzle acts as a basis for even larger puzzles composed of just

of one of these, or a multitude. In the base case, this is achieved

when the outer pieces of one knot are extruded using an anisotropic

(axial) scaling until they go beyond the 3D model. The next step is

to apply a CSG (Constructive Solid Geometry) intersection

between the extruded six pieces and the given 3D model (i.e.,

isolate the intersecting parts of the model and extruded pieces) to

produce the puzzle “skeleton” as shown in Figure 1 (d) [14]. The

general case is when several knots are joined in a network in order

to emulate the desired output object. Both cases produce an object

that is perfectly interlocking and consists of one key piece.

Inspection. The former method, not being computationally

implemented, fails to be generally applicable. It is limited to one

type of final structure that can be assembled using its pieces. It

appears to have a low assembly difficulty and it lacks longevity due

to its absence of variety. The latter method, with its computational

implementation, is generally applicable. In using multiple knots it

is able to contort its extrusion and conform to match a variety of

objects. This variety enables it to add complexity to the types of

interlocking puzzles produced and therefore provide a suitable

challenge. It also has longevity attributed to its variety.

3.1.3 Layers
Background. This approach is one in which a realised object is

built up layer by layer till completion. Each layer is built from the

bottom up, as it would naturally be to assemble a real-world object

with that type of layout of segments. Each layer may consist of

several segments joined together. Each segment is composed of

several pieces.

Approach. The first type of method that implements this kind of

approach is one that uses polyominoes as basic building blocks for

constructing the shapes used in the puzzle assembly. A polyomino

is a generalization of a domino constructed by connecting n squares

edge-to-edge instead of the two squares of an ordinary domino [5].

This method involves three main steps; The initial step is that it

applies quad-based surface parametrization to the input solid, and

tiles the parametrized surface with polyominoes. This means that a

joint sequence of quads are mapped onto the entirety of the input

3D model such that each quad is flattenable to a square, which is

achieved with the assistance of a dual graph over the surface, where

each node corresponds to a quad region on the parametrized

surface, and then a variety of polyomino shapes are generated and

mapped to these quads. In the next step, the method constructs a

nonintersecting offset surface inside the input solid and shapes the

puzzle pieces to fit inside a thick shell volume (which is structured

similarly to the input solid). The build-up process’ consistency is

assured with the use of a dependency graph—which describes the

building-order frequency among the puzzles; in essence, the

implication is that puzzle piece 1 depends on piece 2 when piece 1

is placed into a partially-completed puzzle model which already

contains piece 2. Finally, the method develops a family of

associated techniques for precisely constructing the geometry of

individual puzzle pieces, including the ring-based ordering scheme,

the motion space analysis technique, and the tab and blank

construction method—all detailed in [5]. The end result is an

interlocking puzzle, buildable from the bottom up. Another type of

method that follows this approach is one that uses a voxelized

model, with each voxel split into 8 equal-size blocks. To construct

the model, the method first builds long flat chains of the squares

(named segments) by connecting joints (male and female

connectors on the blocks that permit movement in a certain

direction depending on the type of block) of previous squares to

new squares. Then the next step is to build layers, where a layer is

a set of blocks with the same z-coordinate. Each layer is composed

of segments, where each segment prevents movement of the

previous segment. Then for each layer, the method determines the

last block assembled, orders segments, determines the last block of

each segment, determines assembly directions, and then ensures

that there are joints between adjoining layers, segments, and blocks

in every segment. The last step is to match every block with

predefined blocks, and finally assemble the model using predefined

blocks. This process is outlined in [15]. Both method types use a

layered approach in that pieces have to be assembled from the

bottom up, meaning each piece depends on the piece(s) below it

when the assembling the puzzle. Figure 2 depicts this type of

assembly system.

Inspection. The two methods of the layered approach mentioned

above are sufficiently generally applicable in terms of the variety

of objects that can be produced and assembled having used that

approach as a basis. However, only the first method outputs an

assembly of a model that still matches the original shape and

structure of the original input model but still emulates a real object,

whereas the second method both inputs and outputs a voxelized

object, with no attempts to match any particular real-world

geometry of the represented object. The first method appears fairly

straight-forward in terms of assembly difficulty, whereas the

second method appears to be a bit more complex, due to the various

shapes and extrusions of the pieces. Though different in assembly

difficulty, both methods have longevity since they vary in the types

of objects that can work with.

3.1.4 Voxelisation
Background. This last approach in the 3D puzzle section

highlights methods that rely on the voxelization process in order to

produce pieces that interlock when assembled. Three methods will

be highlighted—with the second and third building off the first.

Approach. The first method takes in a general voxelized shape as

input and iteratively extracts puzzle pieces from it to generate the

puzzle. First is the key piece, then the next piece adjacent to that,

and so on. The method ensures that every three consecutive pieces

interlock, and therefore ensuring that the whole puzzle interlocks

without having to exhaustively verify this. As mentioned, the first

step is to isolate and extract the key piece, which is accomplished

by first picking candidate seed voxels—that is, voxels that are on

the outer surface of the model and that are unobstructed above

them, then calculate voxel accessibility, ensure blocking and

mobility in a given direction, and finally expand the key piece

(select more adjoining voxels to balance the size of the puzzle

pieces) and confirm that the voxels next to the key in a set can be

visited or in the remaining set of pieces that exclude the next piece

to be removed after the key. This process is similarly applied to the

remainder of the voxels, with exceptions to this detailed in [10].

The end result is a voxelized interlocking puzzle that can be

assembled and disassembled, with one piece as the key. The

resulting pieces of this method can only be assembled in a specific

order. The second method draws on concepts from the first, but still

offers its own procedure, and outputs an object that matches the

geometry of the input object, along with ensuring that this object

can be 3D printed (by partitioning it into 3D parts that can be

assembled) without concerns of its size. The first step in this

method is to take in a 3D watertight (well-defined exterior

boundary and closed volume) model as input, then place a voxel

grid in the 3D object space and slightly adjust the voxel size to

reduce the number of undesired partial voxels. Then, the input

model is voxelized. Partial voxels with tiny fragments are avoided

by slightly deforming the model geometry locally. Next, the

connection strength between neighboring (partial) voxels is

measured and a shape connection graph is built by analyzing the

local shapes [12]. Then, construct an initial set of interlocking 3D

parts from the internal voxels, and attach the remaining partial

voxels one by one to the constructed interlocking parts without

breaking the fulfilled requirements (structural soundness and strong

connection). Lastly, the method constructs the geometry of the final

3D parts by using CSG intersection (mentioned earlier) between the

voxelized parts and the input mesh. The third method in this

approach also draws on the concepts and techniques in the first

method. To start off with, the input expected is the final shape of

the assembly, from which the component parts are either

constructed from scratch as in [10] or explicitly initialized. The

computational process for creating an interlocking assembly starts

with the full input model, then iteratively splits off successive parts

for disassembly. At each iteration, it first identifies a set of suitable

blocking relations to be generated between the current assembly

and the new part such that the interlocking property is maintained.

Then it searches for the part geometry that satisfies these blocking

relations. The selection of a new part is guided by a ranking

function that takes into account certain geometric properties, e.g.,

part size, or other requirements, e.g., on part fabrication. The search

space is then explored in a tree traversal process that uses automatic

backtracking when no interlocking solution could be found in a

specific iteration. The method implementation includes a user

interface to interactively explore different options for part

decomposition, allowing the user to overwrite the generic ranking

function for part selection. The end result is a perfectly interlocking

voxelized puzzle [16]. The third method has a major difference

between it and the first—that being that while the first relies only

on the previous piece to immobilize the current piece, the third

relies on all previous pieces to immobilize the current and any other

remaining pieces. All three methods fundamentally rely on the

voxelization process in order to segment the input model into

interlocking pieces. Figure 3 gives an idea of these methods.

Inspection. All three methods are generally applicable, i.e., can

generate a wide variety of interlocking objects. The difficulty of

assembling any of these depends entirely on the builder’s

competency and the model, size, and number of pieces of the

relevant puzzle. All of the methods have longevity, attributed to the

variety in the type of puzzles that can be generated.

3.2 3D Non-Puzzles
Computationally-generated objects go beyond just 3D puzzles—

they span to whatever the algorithm/approach applied can

reproduce. This can be anything from toys to furniture, general, and

novelty items all alike. The possibilities are endless. The objects

visualized with these methods generally inform and feed into new

ways of creating objects that are self-reliant in terms of assembly,

i.e., don’t require external objects to keep them held together. This

is particularly true for those with interlocking mechanisms. This

subsection explores a few approaches used in pursuit of these

mechanisms. Perhaps, to some extent, these approaches could

potentially be applicable to 3D puzzles—but this requires some

intel.

3.2.1 Furniture
Background. Furniture typically consists of assemblies of

elongated and planar parts that are connected together by glue,

nails, hinges, screws, or other means that do not encourage

disassembly and re-assembly [3], so new approaches were

developed that would rid the process of these additional means, i.e.,

through interlocking mechanisms. There are various methods for

this purpose but three will be highlighted here.

Approach. The first method presents a computational solution to

support the design of a network of interlocking joints that form a

globally-interlocking furniture assembly. The key idea is to break

the furniture complex into an overlapping set of small groups,

where the parts in each group are immobilized by a local key, and

adjacent groups are further locked with dependencies. The

dependency among the groups saves the effort of exploring the

immobilization of every subset of parts in the assembly, thus

allowing the intensive interlocking computation to be localized

within each small group [3]. The second method presents an

interactive tool for designing intrinsic joints. Users draw the visual

appearance of the joints on the surface of an input furniture model

as groups of two-dimensional regions that must belong to the same

part. The method automatically partitions the furniture model into

a set of solid 3D parts that conform to the user-specified 2D regions

and assemble into the furniture. If the input does not merit

assemblable solid 3D parts, then the method reports the failure and

suggests options for redesigning the 2D surface regions so that they

are assemblable. Similarly, if any parts in the resulting assembly

are unstable, then the method suggests where additional 2D regions

should be drawn to better interlock the parts and improve stability.

To perform this stability analysis, a novel variational static analysis

method that addresses the shortcomings of the equilibrium method

for this task is introduced. Specifically, this method correctly

detects sliding instabilities and reports the locations and directions

of sliding and hinging failures [4]. The third method presents

computational methods as tools to assist the design and

construction of reconfigurable assemblies (i.e., consists of a

common set of parts that can be assembled into different forms for

use in different situations), typically for furniture. There are three

key contributions to this work. First, the method presents the

compatible decomposition as a weakly-constrained dissection

problem, and derive its solution based on a dynamic bipartite

(consisting of two parts) graph to construct parts across multiple

forms; particularly, the method optimizes the parts reuse and

preserve the geometric semantics. Second, the method develops a

joint connection graph to model the solution space of

reconfigurable assemblies with part and joint compatibility across

different forms. Third, the method formulates the backward

interlocking and multi-key interlocking models, with which it

iteratively plans the joints consistently over multiple forms [11].

An example of furniture is shown in Figure 4 (a).

Inspection. The first method performs well for its intended purpose

but its interlocking mechanism isn’t suited to puzzles, similarly to

the third method, due to their strictly purposed parts and

inconvenience of disassembly. The second method, however, can

be reconstructed as a puzzle thanks to its variety of parts that can

be assembled and disassembled with more ease, and that interlock.

3.2.2 General
Background. Unlike the previous approach (to some extent) there

are approaches that were designed to be generally applicable, i.e.,

generate or guide in creating a variety of different objects. Two

methods within this approach will be highlighted here.

Approach. The first method is one that presents a software

environment intended to support the fluid interactive design of

reconfigurables, featuring tools that identify, visualize, monitor and

resolve infeasible configurations [1]. This method relies on users to

use the tools for the creation and editing of reconfigurables, and

aids in that process; although it’s largely autonomous. The second

method that falls within the General approach is one that allows the

computation of aesthetically pleasing structures that are structurally

stable, efficiently fabricatable with a 2D wire bending machine, and

assemblable without the need of additional connectors. Starting

from a set of planar contours provided by the user, this method

automatically tests for the feasibility of a design, determines a

discrete ordering of wires at intersection points, and optimizes for

the rest shape of the individual wires to maximize structural

stability under frictional contact [8]. An example of a generally

applicable method is shown in Figure 4 (b).

Inspection. Both of the methods are generally applicable and

specialize in creating/designing a wide range of different objects.

Unfortunately, though, neither is suited for creating puzzles—

interlocking ones included as the first simply contorts to

reconfigure itself into a predefined configuration, and doesn’t

necessarily assemble and disassemble with ease, or would be

suitable to do so recreationally, and the second would be too

complex and not suitably designed for recreational use as well.

3.2.3 Novelty
Background. In addition to the specialized and purposed

approaches stated earlier, there also exist approaches that merely

facilitate in creating/designing novelty objects, i.e., cheap or

unusual objects. Two such methods will be highlighted here.

Approach. One such method in this approach is one that presents

a computational system to design an interlocking structure of a

partitioned shell model, which uses only male and female

connectors to lock shell pieces in the assembled configuration.

Given a mesh segmentation input, this system automatically finds

an optimal installation plan specifying both the installation order

and the installation directions of the pieces, and then builds the

models of the shell pieces using optimized shell thickness and

connector sizes. To find the optimal installation plan, simulation-

based and data-driven metrics are developed and incorporated into

an optimal plan search algorithm with fast pruning and local

optimization strategies. The whole system is automatic, except for

the shape design of the key piece [7]. The second method is one

that presents an interactive tool for designing physical surfaces

made from flexible interlocking quadrilateral elements of a single

size and shape. With the element shape fixed, the design task

becomes one of finding a discrete structure—i.e., element

connectivity and binary orientations—that leads to the desired

geometry. In order to address this challenging problem of

combinatorial geometry, the method proposes a forward modeling

tool that allows the user to interactively explore the space of

feasible designs. Paralleling principles from conventional modeling

software, this approach leverages a library of base shapes that can

be instantiated, combined, and extended using two fundamental

operations: merging and extrusion [6]. An example of a novelty

object is shown in Figure 4 (c).

Inspection. Both of the methods are generally applicable and

specialize in creating/designing a wide range of different objects,

just as the methods in the previously-mentioned approach. From a

design standpoint, both methods would be suited for

creating/designing puzzles, although the first method wouldn’t

offer a high difficulty due to its ease of assembly.

4. ALGORITHM COMPARISON
This section compares some key attributes/characteristics of

algorithms, in an attempt to find one or a few that are optimal in

generating interlocking puzzles, and perhaps finding one that

subjectively does it best.

Ref Computational

Speed

Variability of Output Model Size Limit Quality of Output Puzzle Level of

Difficulty of

Implementation

Interlocking

Mechanism

Difficulty

[2] N/A Medium—purposed for

houses/castles, but can

be repurposed for more

Depends on the size

of the object’s

materials

Not computationally-

generated, but the output

is flat along each surface

and interlocks without

fault

N/A Low

[13] N/A High—with non-planar

pieces, more and

different types of

objects can be made

Depends on the size

of the object’s

materials

Not computationally-

generated, but the output

interlocks without fault,

although it consists of too

many additional items to

ensure interlocking

N/A Medium

[9] N/A Low—Output always

likened to a sphere. No

variability

Each piece has an

approximate radius

of 38 cm, the

diameter of the

assembled object =

38*4 = 152

Not computationally-

generated, but the output

interlocks without fault.

Can only be likened to a

sphere and no other

object

N/A Low

[14] Model: bunny

#pieces: 16

Time (s): 163

High—but limited to

3D shapes with parts

that aren’t too flat or

narrow

64 knots. 240 pieces High—output is wooden,

but still resembles source

object

Medium Medium

[5] Model: bunny

#pieces: 258

Time (s):

0.224

High—generates a wide

variety of objects, but

limited to models that

don’t have thin or

highly curved parts

325 pieces High—completely

resembles source object

Medium Low

[15] Model: alpaca

#pieces: 400

Time (s): 0.15

High 13104 pieces Low—resembles source

object but has no outer

surface, and is blocky

and non-smooth

Medium Medium

[10] Model: bunny

#pieces: 10

Time (s):

378.6

High—generates

voxelized variations of

different objects, but

limited by object pieces

that rotate

1250 pieces Low—resembles source

object but the output is

still a voxelized

representation

Medium Low

#voxels:

20010

[12] Model: bunny

#pieces: 16

Time (s): 43

#voxels: 536

High—generates a wide

variety of objects, but

limited to models that

aren’t hollow with thin

boundaries

20 pieces High—completely

resembles source object

Medium Low

[16] Model: bunny

#pieces: 10

Time (s): 43.8

High—generates

voxelized variations of

different objects

1500 pieces Low—resembles source

object but the output is

still a voxelized

representation

High Low

Table 1: 3D Puzzle Algorithm Comparison

5. CONCLUSION
Interlocking is an intriguing but complex mechanical state, where

assembled component pieces appear to lock one another. Yet, the

puzzle can be disassembled through certain sequences of moves

starting from the key(s) [10]. We have peered at various approaches

to solving this problem and analyzed a few key characteristics that

show resemblance or difference among them here. For general

comparison purposes, a model of a bunny (or as close a

representation as can be found) is used across all 3D puzzle

approaches.

As can be seen from the comparisons in Table 1, the following

apply:

Speed. Pertaining to computational speed, [15] is able to generate

more pieces with the least amount of time.

Output variability. The majority of approaches have high

variability.

Model size limit. [15] has the largest number of recorded pieces

for its respective assembly.

Quality of output puzzle. [2,13,9] are not computationally-

generated, the rest are, but only [14,5,12] are of high quality.

Implementation difficulty. [16] has shown to be the most difficult,

while [10] has shown to be the least difficult.

Interlocking mechanism difficulty. On average, the difficulty is

low. In this case, the higher the difficulty, the better it is for

dis/assembly—as people generally want this to be a challenge.

Approaches [13,14,15] accomplish this best.

Non-puzzles. On the basis of the inspections listed above for the

described and analyzed non-puzzle approaches, there are three

methods that could potentially be applied to puzzle generation—

given time for testing. The first is [4]—where based on its ability

to create a variety of interlocking parts that can be assembled and

disassembled with more ease, paves way for the possibility of

venturing into 3D puzzles, except that no computation times are

provided and so this is only conjecture. The second prominent

method is [7]—where similarly to [4], provides variety and ease of

assembly; in addition, a squirrel model composed of 11 pieces takes

130.7 seconds to generate, which is significantly slower than the

fastest 3D puzzle approaches but still makes it a choice among

them. The last is [6]—where likewise, there’s ease of assembly and

variety of output; in addition, a bunny model composed of 188

pieces takes 160 seconds to generate, which is faster than a few of

the 3D puzzle approaches, so it is a choice as well.

Overall. On the basis of Table 1 and minor analysis of each

approach in subsections 3.1 and 3.2, it appears that [15], although

generating models without surfaces for resembling source models,

is the best/most efficient among the various approaches

investigated here, based on the specific characteristics in Table 1.

6. REFERENCES
[1] AKASH, G., ALEC, J., AND EITAN, G. 2016.

Computational Design of Reconfigurables. ACM Trans. on

Graph. (SIGGRAPH) 35, 4 (2016). Article No. 90.

[2] BENOIT, P. AND GAREAU, D. (2000). Three-dimensional

Puzzle. 6,086,067.

[3] FU, C.W., SONG, P., YAN, X., YANG, L.W.,

JARAYAMAN, P.K., AND COHEN-OR, D. 2015.

Computational interlocking furniture assembly. ACM Trans.

Graph. 34, 4, Article 91 (July 2015), 11 pages.

[4] JIAXIAN, Y., DANNY, K., YOTAM, G., AND MANEESH,

A. 2017. Interactive Design and Stability Analysis of

Decorative Joinery for Furniture. ACM Trans. on Graph. 36,

2 (2017). Article No. 20.

[5] LO, K.-Y., FU, C.-W., AND LI, H. 2009. 3D Polyomino

puzzle. ACM Tran. on Graphics (SIGGRAPH Asia) 28, 5.

Article 157.

[6] MÉLINA, S., STELIAN, C., EITAN, G., AND

BERHNHARD, T. 2015. Interactive Surface Design with

Interlocking Elements. ACM Trans. Graph. (SIGGRAPH

Asia) 34, 6 (2015). Article No. 224.

[7] MIAOJUN, Y., ZHILI, C., WEIWEI, X., AND HUAMIN, W.

2017a. Modeling, Evaluation and Optimization of

Interlocking Shell Pieces. Comp. Graph. Forum 36, 7 (2017),

1–13.

[8] MIGUEL E., LEPOUTRE M., BICKEL B.: Computational

design of stable planar-rod structures. ACM Transactions on

Graphics 35, 4 (July 2016), 86:1–86:11.

[9] MILLER, JR., J. (1998). Three Dimensional Interlocking

Puzzle. 5,762,336.

[10] PENG, S., CHI-WING, F., AND DANIEL, C. 2012.

Recursive Interlocking Puzzles. ACM Trans. on Graph.

(SIGGRAPH Asia) 31, 6 (2012). Article No. 128.

[11] PENG, S., CHI-WING, F., YUEMING, J., HONGFEI, X.,

LIGANG, L., PHENG-ANN, H., AND DANIEL, C. 2017.

Reconfigurable Interlocking Furniture. ACM Trans. On

Graph. (SIGGRAPH Asia) 36, 6 (2017). Article No. 174.

[12] PENG, S., ZHONGQI, F., LIGANG, L., AND CHI-WING, F.

2015. Printing 3D Objects with Interlocking Parts. Comp.

Aided Geom. Des. 35-36 (2015), 137–148.

[13] SIMMONS, T. (2006). Three-dimensional Puzzle. US

7,021,625 B2.

[14] XIN, S.-Q., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y.,

AND COHEN-OR, D. 2011. Making burr puzzles from 3D

models. ACM Tran. on Graphics (SIGGRAPH) 30, 4. Article

97.

[15] YINAN, Z., AND DEVIN, B. 2016. Interlocking Structure

Assembly with Voxels. In IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems. 2173–2180.

[16] ZIQI, W., PENG, S., AND MARK, P. “DESIA: A General

Framework for Designing Interlocking Assemblies”. In: ACM

Transactions on Graphics (SIGGRAPH Asia) 37.6 (2018).

Article No. 191.

